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Symbol Definition 
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TECHNICAL MEMORANDUM X-64693 

TWO DIFFERENT APPROACHES FOR A CONTROL LAW 
OF SINGLE G IMBAL CONTROL MOMENT GYROS 

I NTRO DUCT ION 

Double gimbal control moment gyros (DGCMG' s) are  well suited for space 
applications as  shown by W. B. Chubb and S.  M. Seltzer (Reference 1) in their 
investigation of the Skylab Attitude and Pointing Control System. 
DGCMG' s have hardware problems since there are two gimbals and four bearings 
with each DGCMG. 
now of increasing interest in the field of momentum exchange attitude control 
systems. The SGCMG's a r e  presently being considered for the High Energy 
Astrononomy Observatory (HEAO) and Large Space Telescope (LST) projects. 
Bendix, Sperry Rand, and TRW Systems have published reports relating to the 
use of SGCMG's. 
lations done by MSFC, show that problems occur from the singularities which 
appear in the SGCMG cluster. A singularity is present if the cluster cannot pro- 
duce a torque in a given direction in the three-dimensional space; then, at  least in 
one direction, the spacecraft will not be controllable. The saturation singularity 
surface is given by the outer angular momentum envelope and can be avoided only 
by use of a desaturation system employing external torques. However, there are  
singularities within the angular momentum envelope which, theoretically, can be 
handled with desaturation by external torques. 
the SGCMG's is necessary to avoid the singularities. 
been investigated in the aforementioned reports with little success. 
two different approaches for the most general, nonlinear control law will be dis- 
cussed. A 
comparison between the two approaches will be made on a qualitative basis, since 
quantitative measures are a function of a particular CMG configuration. Thus, a 
comparison on a quantitative basis can only be made if a specified CMG cluster is 
given; however, some illustrations are included. 

However, 

Thus, single gimbal control moment gyros (SGCMG's) a re  

(See References 2,3, and 4.) These reports,  a s  well a s  simu- 

Thus, a specific control law for 
Some control laws have 

In this report, 

The numerical computation of these control laws will not be given. 



MATHEMATICAL DESCR I PTION 

Let €4 be the number of single gimbal control moment gyros within the 
- L e -  

spacecraft. Let X =  (XI  , X, , X3} be a n  orthonormal frame fixed in the 
-L -L 

spacecraft and Z. = { g  
SGCMG, j = 1( 1) N. The frame Z is defined as follows (Fig. 1) : 

, Z J l j  2j 3j 
, Z } an orthonormal frame fixed in the jth 

j 

Z - axis is along the gimbal 
1 j  

axis, 

Z - axis is along the wheel 
2j 

axis, 

I" 
Z - axis completes the 
3j 

right- handed frame. 

The angular momentum of the 
jth SGCMG can be described in  tensor 
notation using the summation conven- 

% tion 

- -L 

Figure 1. SGCMG fixed H . = p i j X i =  zjHijZij, i=  1(1)3 , (1) 
frame. J 

where xHij and 

sponding to frame X and Z , respectively. From the definition of frame Z 

for a completely balanced wheel, 

H 
Zj  ij  a r e  the coordinates of the angular momentum corre- 

j j 

T 
H.. = 10 h. 01 

zl  1J J 
9 

wherc h. is  the jth SGCMG angular momentum. 
I 
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It is  practical to introduce a second spacecraft fixed frame Y. = 
J 

{ ‘iri , F2 , T3) which is correlated to the jth SGCMG in the following way: 

Y - axis is along the gimbal axis, 
1.i 

Y - axis is along the zero gimbal angle direction, 
2j  

Y - axis completes the right-handed frame. 
3j 

Then the transformations between frame X , Y. , and Z .  a re  charac- 
terized by J J 

- m. -c XY Y .  z 
Ja y = ja J ja k = 1(1)3,1 = 1(1)3 . ( 3 )  ik kj ik kl Lj’ 

x. = 
1 

XY. 
IIcrc the matrix 

SGCMG within the ctustcr. Therefore, Ja is time-invariant. 

Ja  depends on the geometrical configuration of the jth i k  
XY. 

ik  

y. z 
The matrix J ja is an explicit function of the gimbal angle 6. of the 

J ik 
jth SGCMG: 

Y .  z. 
J J a  = 

ik  

1 0 0 

0 cos6 - sin6 
j j 

0 sin6 cos6 
j j 

(4) 

Applying equation (4) to equation (2) one gets 

Here the theorem was used that vector coordinates a re  transformed just a s  the 
base vectors of the corresponding frames. 

3 



The angular momentum of the total CMG cluster will be evaluated in 
frame X which is the only frame used further, 

U s i n g  equation (5), equation (6) can be rewritten using the convenient matrix 
notation, 

I t  results that the angular momentum of the CMG cluster is a nonlinear 
3 x 1 vector function f of the N x 1 gimbal angle vector 6 .  From equation 
(7) the outer angular momentum envelope can be determined by variation of the 
gimbal angles. It has to be pointed out that the angular momentum envelope 
may have windows. Therefore, numerical investigations are recommended in 
each particular case. 

The torque that can be produced by the CMG cluster follows from the 
derivative of the angular momentum with respect to the inertial space. It 
y i e  Ids 

where the 3 x 1 torque vector T and the 3 x 3 skew symmetric matrix w" 
appear. The matrix 5 corresponds to the angular velocity w of the frame X 
relative to the inertial frame. Usually the angular velocity is small and the 
second term in equation (8) is neglected. Thus, i t  remains 

where the 3 x N Jacobian matrix A of the nonlinear vector function appears. 
The CMG cluster is termed singular if the rank of matrix A is smaller than 
three; otherwise it may be termed regular: 

(10) 

RankA = 3 Regularity 

Rank A < 3 Singularity 

4 



Usually singular surfaces can be found within the outer momentum 
envelope. If the angular momentum vector reaches a point on a singular surface, 
then the CMG cluster cannot produce a torque in an arbitrary direction. The 
resulting torque is  constrained to a plane (Rank A = 2) or a line (Rank A = 1) . 
This mcans that the controllability of the spacecraft is lost and arbitrary 
attitude e r rors  may occur. Therefore, it is necessary to use a t  least three 
SGCMG' s, N 2 3,  and it is very important to find a control law for the 
SGCMG' s which guarantees the avoidance of singularities. 

For the formulation of a feasible control law some measure of the CMG 
cluster's regularity is needed. Such a measure can be found that is analogous 
to the degree of controllability introduced by P. C . MGller and H. I. Weber 
(Reference 5)  using the quadratic symmetric matrix 

T T G = A A  = G  

One degree of regularity g is defined by the determinant of matrix G: 

( 12) 
T 

g = detG = det AA 

Another degree of regularity is found from the eigenvalues h of matrix G: 
j 

Both degrees of regularity are positive for regular CMG clusters hutthey- 
vanish in the case of singularities and depend on the gimbal angle vector b .  

The numerical computation of equation (12) can be simplified using the 
Binet-Cauchy formula 

N N( N-1) (N-2) 
g =  f A 2 ,  ( 3 ) =  , N L 3  , i 3 !  i= 1 

5 



N 
i 3 

where A denotes the ( ) distinct subdeterminants of order 3 extractable 

from the 3 X N matrix A .  Thus, even in the case of numerous SGCMG' s 8 

there will be no essential difficulties in computation of the determinant 
equation (12). 

In general a control law can be found by inversion of equation (7) or 
equation ( 9 ) .  In the first approach, the gimbal angle vector 6 has to he 
controlled and the angular momentum vector H will be commanded. Using 
the second approach, the gimbal rate vector 6 is controlled and the torque 
vector T is commanded. 

GIMBAL ANGLE APPROACH FOR A CONTROL LAW 

The spacecraft will be controllable by the CMG cluster's angular 
momentum if the Jacobian matrix A has full rank 3 for each angular momentum 
vector within the outer envelope. Optimal controllability will be given if the 
matrix A has an optimal regularity or, using equation (12) ,  if 

1 
(15) g(6) Max . 

Thus, for each point within the angular momentum envelope, a gimbal angle 
vector 6 has  to he found satisfying equation (15). Since the gimbal angle 
vcctor is subject to equation (7) too, which can be interpreted a s  a constraint 
equation, necessary conditions for a local extremum can be found by the 
method of Lagrange multipliers. It yields (See Reference 6) 

H - f(6) = 0 

T C - h A = O  

with the 1 X N Jacobian matrix C = a g/a 6, the 3 X N Jacobian matrix 
A = af /a6 ,  the 3 x 1 vector A. of the Lagrange multipliers, and N > 3. By 
equation (16) there are (3 + N) equations to solve for N gimbal angles and 
3 Lagrange multipliers. The solution of equation (16) will be a nonlinear 
N x 1 vector function, 

6 



6 = h(H) , 

which can be named the inverse of equation (7) or  the gimbal angle control 
law. 

The following cases now have to be discerned: 

1. h(H) and a h/8 H exist everywhere within the H-space of the 
e nv elope, 

2. h(H) exists and a h/a H does not exist everywhere within the 
H-space of the envelope, 

3. h( H) does not exist everywhere within the H-space of the envelope. 

Case 1. The commanded trajectory of the angular momentum vector 
can be achieved within the envelope by a smooth control of the gimbal angle 
vector. Specifically, by differentiation of equation ( 17) one obtains 

a h  
a H  

B = - H = F(H)T , 

where F is the N X 3 Jacobian matrix corresponding to equation (17). 
Introducing equation (7) into equation (18) one obtains 

6 = F ( ~ ) T  

which defines an SGCMG control law without singularities within the 6 space 
ofthecube: - T S  6 5 + 71, j = 1 ,  2, ... N > 3 .  

j 

Case 2. The commanded angular momentum trajectory can be achieved 
within the envelope by a discontinuous control of the gimbal angle vector. This 
means that jumps occur in the gimbal angles at  some surfaces within the 
envelope. During the time intervals needed for  the jumps , the spacecraft will 
show some attitude errors.  If the jump time interval approximates zero, the 
spacecraft e r r o r s  vanish also,; however, infinite gimbal rates are necessary 
in the limiting case ,  Such a jump phenorrlenon can be called internal desatu- 
ration because the CMG cluster is turned into a better regularity without any 
external torque. 

7 



Case 3. The commanded trajectory of the angular momentum vector 
cannot always reach the outer envelope. 
envelope and, if the trajectory of the angular momentum vector is commanded 
to such a hole, ,external desaturation has to be provided by external torques. 

There a r e  holes within the 

Programs for constraint parameter optimization problems can be used 
for the solution of equation (16) .  Starting points may be the origin of the 
envelope and/or some known points on the envelope corresponding to the axis 
of the frame. 

GIMBAL RATE APPROACH FOR A CONTROL LAW 

The spacecraft can be controlled by the CMG cluster's torque if the 
Jacobian matrix A has the full rank 3 and especially if optimal regularity is 
required: 

(20) 
1 

g(6) 4 Max 

However, the torque equation, equation (9) ,  with the gimbal ra te  vector 6 
a s  a controlled variable cannot be combined immediately with equation (20) 
for inversion. Thus, the general solution of linear equations first has to be 
trcatcd, a s  by C .  R. Rao and S. K. Mitra (Reference 7). 

A general solution of the consistent equation T = A d  is 

where A -  is any N X 3 generalized inverse matrix of A ,  E i s  the N X N 
unit matrix, and z is an arbitrary N X 1 vector. 

Assuming the full rank 3 of matrix A the right inverse can be used 
a s  a generalized inverse matrix, 

8 



Then, due to the properties of symmetric matrices, it yields 

9 (23) 
T T - 

E - A A = E - A ( A A ~ ) - I A  = BB 

T where B isan N X ( N  - 3) matrix. Further, Rank BB = N - 3 and AB 0. 
Sincc z is an arbitrary vector, it follows that 

T U = B Z  , 

where u is an arbitrary ( N  - 3) X 1 vector, equally. From equation (21) 
to equation (24), it follows that 

which is the inverse of equation (9)  or  the gimbal rate control law. The 
gimbal rate vector depends not only on the commanded torque T but also on 
an arbitrary vector u which produces no physical torque on the spacecraft. 
Thus, the vector u can be used for a redistribution of the gimbal angle vector. 
It is obvious from equation (25) that the gimbal angles a r e  not completely 
redistributable by u since T is an unknown, commanded function of time. 
However, if a t  least the degree of regularity is redistributable by u ,  
then singularity avoidance seems to be possible. For  the synthesis of a 
redistribution law, equation (20) has to be combined with equation (25) which 
can be done in two different ways: ( 1) linear redistribution and (2)  nonlinear 
redistribution. 

Case 1. From equation (20) it follows, examining the time history of 
the CMG cluster between zero angular momentum and outer angular momentum 
envelope, that 

d 1 - g(6) = Max . 
dt (2ti) 

Since the degree of regularity g is a nonlinear function of the gimbal angle 
vector, it yields 

9 



with the 1 x N Jacobian matrix C known from equation (1 6) .  Using equation 
(25) , one obtains 

= C A ~ ( A A ~ ) - * T  -t C B ~  . 

Since the first  term of equation (28) is commanded, only the second term of 
equation (28) can be used to redistribute the regularity and to satisfy equation 
( 2 6 ) .  There a re  two subcases possible: (I)  D = CB 0, locally unredistrib- 
utable and ( 2 )  D =  CB # 0, redistributable. In case (1) the regularity g of 
the CMG cluster is locally unredistributable and thercfore no redistribution law 
can be defined. In case (2)  a suitable redistribution law is 

u = u sgndi(6)  , (29) 
0 

where d. a r e  the elements of the 1 X ( N  - 3) matrix D = CB depending on 

the gimbal angle vector 6. The redistribution gain u is arbitrary. However, 

by examining equation (28) it results that for an efficient redistribution, even 
in the neighborhood of a singularity g w 0, it is necessary that 

1 

0 

denotes the norm of the vector u . where ~ ~ u o ~ l  0 

Case 2. For an optimal satisfaction of equation (20), the absolute 
reachable regularity for each gimbal angle vector 6 within the gimbal angle 
cube has to be found. This can be done only in the limit case of zero torque 
T IIu 11 - co , because the commanded 
torque is an unknown function of time. Assuming zero torque T 0, it 
remains from equation (25) : 

0 o r  infinite redistribution control 

6 = B u  . 



This nonlinear differential cquation has to be solved for arbitrary redistribu- 
tion vectors u with all possible gimbal angle vectors 6 a s  initial conditions 
under simultaneous computation of the degree of regularity g. It is obvious 
that this can be accomplished, in general, only with considerable complexity. 
However, in  the case of four SGCMG' s, equation (31) changes to two deter- 
mined equations 

. . 
6 = + B u  9 6 = - B u  , 

where u is a scalar. By solution of equation (32) there will be found, for 
each gimbal angle vector 6 within the admissible cube, the optimal sign of 
the redistribution control characterized by some number E .  Thus, a redis- 
tribution law will be 

u =  u sgnE(6)  , 
0 

u -a 
0 (33) 

IIowever, in practice, infinite gimbal rates assumed for the synthesis of the 
redistribution law equation (33)  are  not feasible. Theu'efore, the optimal 
redistribution may be approximated only, since the additional influence of 
the commanded torque will change things continuously. 

The numerical computation of the linear control law equation (25) and 
the linear redistribution law equation (29) is simple. For the solution of the 
nonlinear differential equation (32) , resulting in the nonlinear redistribution 
law equation (33) , presently available programs can be used. 

COMPAR 1 SON OF GIMBAL ANGLE AND 
GIMBAL RATE APPROACH 

A comparison of the gimbal angle and the gimbal rate approach is made 
in Table 1 assuming some simplifications. It is quite clear that the 
gimbal angle approach i s  much more suitable for the control law of the 
SGCMG' s than the gimbal rate approach. The reason is that the fundamental 

property of the CMG cluster, the regularity g = det AAT, depends on the 
gimbal angles and not on the gimbal rates. Therefore, in the nonlinear 

11 
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gimbal rate approach, an integration i s  necessary to find a redistribution law. 
The linear gimbal rate approach, on the other hand, may be restricted due 
to the local information which results from the differentiation process 
characterizing the gimbal rate approach. In addition, a large torque command 
can overcome the provided redistribution and drive the CMG cluster to a small 
regularity . 

From the standpoint of technical realization, the linear gimbal rate 
approach is preferable because all computations can be done on line a t  the 
spacecraft. On the other side, the gimbal angle approach and the nonlinear 
gimbal rate approach need an intensive off-line computation and the resulting 
control laws have to be stored in  the onboard computer in discrete form. 
llowever, the gimbal angle approach is defined over the three-dimensional 
angular  momentum space, while the nonlinear gimbal rate approach is defined 
over the N-dimensional gimbal rate space. 

EXAMPLES 

F o r  a regular four-CMG cluster, a s  shown in Figure 2, the mathemat- 
ical description will be given. For the illustration of the gimbal angle approach, 
an optimal gimbal angle vector will be determined for  zero angular momentum 
and the linear gimbal rate approach will be treated in the neighborhood of a 
singularity. 

Let the four SGCMG's have equal angular momentum in the correspond- 
ing frames Z Thus, from equation (2)  one obtains 

j' 

Further, equation (5) results in 

T 
H.. = h[O cosd. sind.1 , j = 1(1)4 . 

Yj 13 3 3 

(34) 

(35) 
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Figure 2. CMG cluster configuration. 

The transformation matrices a r e  

cosp 0 sin6 

ik 

14 

(37) 



and 

cosp 0 

ik 1 0 -1 

sinP 

Y (39)  , 

H =  

where p is a constant angle. From equation (6) and (7) one obtains 

cos63 + cos@ sinti4 

cosp s i n d l  + cos6, - cosP sind3 - cos6, 

sinp sintj1 + sinp sin6, + sinP s inb3  + . sinP sin 6, 

cos6; - cos6 sina2 - 

and the Jacobian matrix, cquation (9), is 

The minors A .  of the matrix equation (41) a r e  
1 

A .  = sinp s in6 ein(6 + 6 ) 
1 i+2 i+ 1 i+3 

- sin0 cosp cos6 s in (6  - 6 ) 

+ 2sinP cos2p cos6 cos6 cos6 

6, , 6, b, 

i-i-2 i+ 1 i+3 

i+ 1 i+2 i+3 

i = 1( 1)4 and 6, = 6 ,  , 6G (42) 



For illustration of the gimbal angle approach, an  optimal gimbal angle 
vector will be determined. In the case H E 0, there exists the particular 
solution 

6, = - 6,= 6,= c 6 , =  0 . (43) 

In  regard to equation (43) one obtains from equation (42) 

A .  = A = - sinP sin8 sin 28 + 2 sinP cos2 0 cos3 8 , 
1 

i = 1(1)4 . ( 44) 

Thus, with equation (14), the regularity of the CMG cluster for H 0 i s  

4 T g = detAA = A: = 4A2 (8) (45) 
i= 1 I 

The regularity, equation (45),  is plotted for 0 = 45 deg in Figure 3. It is 
obvious that there a r e  six singularities and two optimal gimbal angles. Thus, 
in this simple case one obtains 

6 = h ( H = O ) =  0 . (46) 

Such an optimal gimbal angle vector has to be found for each angular momentum 
vector within the envelope. 

For  illustration of the gimbal ra te  approach, a linearization in the 
neighborhood of the singularity 6, = 6, = 0, 6, = - 6, = - 7r/2 is performed. 
A t  time t = to let 

16 



0 
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(47) 

whcre 8 ,  << 1 and 6 
equation (41) the following Jacobian matrix neglecting all terms of third and 
higher order: 

, j = 1(1)4 , is  arbitrary. Then, onc obtains from 
j0 

with the regularity 

Further, it yields 

4 
g 

- 1  
A ~ ( A A ~ )  = - 

18 

0 -sin2pcosp( 1 + cos2p)8? sin2pcos2P6~ 

-s 1n2p co 53p 8 02 sir$cos2p( 1 + cos2p) 0 



and 

The matrix C according to equation (27) is 

and the matrix D, in this example a scalar, is 

D = C B = O  . (53 )  

Thus, it results that the CMG cluster is locally unredistributable even though 
the regularity, equation (49), does not vanish. 

CONCLUSION 

Two different approaches for a control law of single gimbal control 
moment gyros have been presented but the gimbal angle approach seems to he 
better suited for a control law than the gimbal rate approach because of the 
singularity problem. The gimbal angle approach requires off-line compu- 
tation of suitable gimbal angles for each point within the three-dimensional 
angular momentum envelope and the commanded variable is the angular 
momentum itself. 
by online computation and the commanded variable will be the torque. The 
nonlinear gimbal rate approach also requires off-line computation of suitable 
redistribution controls for each point within the N-dimensional gimbal angle 
cube. However, a general statement on the controllability of spacecrafts 
with an SGCMG cluster has not been found. 
tations will answer this question. 

The linear gimbal rate approach can be implemented 

Only detailed numerical compu- 
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